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Abstract

An optimization procedure is devised to ®nd the inlet velocity pro®le that yields as uniform an epitaxial layer as
possible in a vertical MOCVD reactor. It involves the solution of fully elliptic equations of motion, temperature,
and concentration; the process is highly nonlinear and has been e�ciently treated by breaking it into a series of

linear problems. The optimal pro®le approximated by a 6th-degree Chebyshev polynomial is very successful in
reducing the spatial non-uniformity of the growth rate. The optimization is particularly e�ective when the Reynolds
number is high and the inlet-to-wafer distance becomes large. It is also found that a properly constructed inlet
velocity pro®le can suppress the buoyancy driven secondary ¯ow and improve the growth-rate uniformity. # 1999

Elsevier Science Ltd. All rights reserved.

1. Introduction

Epitaxial (single crystalline) thin ®lm is the basic ma-
terial for manufacturing compound semi-conductors
(e.g. GaAs). Among various methods commonly used

in growing thin ®lms, such as molecular beam epitaxy
(BME), liquid phase epitaxy (LPE) and metalorganic
chemical vapor deposition (MOCVD), the MOCVD
process through pyrolysis or chemical reaction of

vapor-phase source has been most popular because of
the highly uniform ®lm thickness and composition [1,2]
that it produces.

The epitaxial layer grown in a vertical MOCVD
reactor is generally satisfactory for many practical pur-
poses. However, it may fall short of meeting the

required thickness uniformity for very demanding ap-
plications such as the micro-electronics technique. As

the mass transfer of the source gas governs (mass-
transport-limited regime) [3±9] the deposition rate for
conventional operating condition (0.1±1 atm, 800±

1100 K), a sensible way to improve the deposition per-
formance is to control the ¯ow phenomena in a reactor
under such circumstances. Many techniques have been
proposed in the literature in this regard. Among these

are rotating the reacting surface [3±5], lowering the
reactor pressure or reversing the ¯ow direction to sup-
press the buoyancy e�ects [4,5], revising reactor shapes

[4,10], and controlling the inlet ¯ow condition
[8,9,11,12]. A popular practice is to use the ¯ow-distri-
butor of porous materials [3,5,8] at the inlet to make

the inlet velocity distribution uniform in the belief that
a uniform ¯ux yields even growth rate across the
wafer. This, however, is not completely true. Although
it does help achieve generally uniform ®lm thickness,

the accelerating ¯ow around the susceptor edge inevi-
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tably results in higher growth rate at the wafer edge

than in the center [3,4,8].
The recent study by Cho et al. [9] showed that the

uniformity of the ®lm can be greatly enhanced by con-

trolling the concentration distribution at the inlet.
Taking full advantage of the linearity of the system,

the procedure to determine the optimal inlet condition
was made fairly e�cient as the costly iteration for the

¯ow-®eld calculation could be avoided. While the

scheme is promising, controlling the inlet concentration
is not easy and thus may lack practicality. To make

the procedure more practical, one should consider con-
trolling other quantities, such as the inlet velocity or

the chamber shape. Obviously, it makes the system

nonlinear and devising an e�cient optimization process
become much more complex.

The analysis is much more involved because the re-

lation between the inlet velocity and the growth rate is
nonlinear as shall be seen later in this paper. Once the

optimal inlet velocity is found, it can be readily im-
plemented by using the existing methods such as the

¯ow distributor of porous material [8] or the multiple

gas-injector technique [11,12]. The method would be
economically attractive as it does not require any com-

plex and/or expensive equipments such as a vacuum
pump to reduce the operating pressure or a motor to

rotate the susceptor. As an extension of the earlier

study, the major objective of the present study is to
develop such procedure and to perform analyses to

obtain optimal inlet velocity pro®les for various aspect
ratios and ¯ow/thermal conditions.

2. Analysis method

In the chamber of cylindrical shape considered in

the present study, the susceptor of radius rs is a dis-
tance H away from the inlet of radius rin at the top
(see Fig. 1); the reactant gas is blown in through the

inlet and goes out via the gap between the chamber
wall and the susceptor. Since the ¯ow is axisymmetric,
the governing equations of continuity, momentum,

energy and concentration in (r, x ) coordinates may be
written as:
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Nomenclature

A area
C concentration
E cost function

G growth rate
Gr Grashof number, Gr=gb(TsÿTin)r

3
s/n 2

H wafer to inlet height

M molecular weight
N degree of polynomial
Pr Prandtl number, Pr=n/aT
R reactor radius
Re Reynolds number, Re=uinrs/n
ReO rotational Reynolds number, ReO=Or 2s/n
Sc Schmidt number, Sc=n/aM
T temperature
V velocity vector
a polynomial coe�cients

g gravity
n unit normal vector
p pressure

(r, x ) radial and axial coordinates

u velocity components

Greek symbols
O angular velocity

a di�usion coe�cient
b thermal expansion coe�cient
d small displacement

f Chebyshev polynomials
r density
n kinematic viscosity

Subscripts and superscripts
� dimensional quantity
M mass
T temperature

in inlet
(r, x ) radial and axial coordinates
s susceptor
w wafer
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�Vr�C � 1
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where (ur, ux ) are velocity components in (r, x ) direc-
tions, respectively, p the total hydrostatic pressure, T

the temperature, and C the concentration. It su�ces to
consider one component for concentration since only
the gallium containing species, Ga(CH3)3, limits the

GaAs epitaxial layer growth rate [3±8]. These
equations have been made dimensionless by using the
mean inlet velocity uin, the temperature di�erence

DT(=TsÿTin), the inlet reactant gas concentration Cin

and the susceptor radius rs. The dimensionless par-
ameters Re (=uinrs/n ), Gr (=gb(TsÿTin)r

3
s/n 2), Pr

(=n/aT) and Sc (=n/aM) are Reynolds number,
Grashof number, Prandtl number, and Schmidt num-
ber, where n, b, aT and aM denote the kinematic vis-
cosity, the thermal expansion coe�cient, the thermal

di�usivity and the mass di�usivity, respectively. Note
that the Bussinesq approximation is invoked for the
buoyancy term in the momentum equation and the

concentration gradient is assumed to have little impact
on density variation because the reactant mole fraction
is negligibly small (typically 10ÿ5010ÿ3).
For the computational domain that extends from

the inlet to the exit in one azimuthal plane (see Fig. 1),
the following boundary conditions appear to simulate
the real situation best:
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The vanishing concentration at the wafer surface [3±9]
is the result of the deposition process that accompanies
the chemical reaction. Also, since the amount of mass
deposition compared with the ¯ow rate is negligible,

the mass-depletion e�ects are not considered.
On a non-staggered grid, the governing equations,

Eqs. (1)±(5), subject to the boundary conditions (6)±(9)

are solved by SIMPLE algorithm of Patankar [13].
The di�usive derivatives in the equations are discre-
tized by the central di�erencing while the convective

derivatives are done by QUICK scheme [14]. The
momentum interpolation scheme of Rhie and Chow
[15] is incorporated in the procedure to avoid the

occurrence of the unrealistic checker-board pressure
pattern. The process is iterative and the solution is
considered to have converged when the sum of the re-
siduals over the entire domain in each equation

becomes less than 10ÿ5.

3. Optimization technique

We wish to make the spatial variation of the depo-
sition rate as small as possible by controlling the inlet

velocity distribution. The ®lm growth rate in a mass-
transport-limited regime is expressed by Fick's law as

G � � ÿaM @C
�

@x�
MF

rF

�10�

where MF is the molecular weight, rF the density of
the growing solid ®lm and the superscript � denotes
the dimensional quantity. The nondimensionalization

Fig. 1. Schematic of a vertical reactor.
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by G=G � � (rsrF/CinaMMF) results in G=@C/@x in
that the growth rate is identical to the normal concen-

tration gradient on the wafer.
The cost function representing the normalized

spatial non-uniformity of the growth rate that needs to

be minimized may be de®ned as

E �

8><>:
�
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�G�r� ÿ �G �2 dA

�G
2
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9>=>;
1=2

�11�

where G is the average growth rate and Aw is the area

of the wafer whose radius is taken to be 0.8 times that
of susceptor's. The wafer size is arbitrary and could
take a larger or smaller value. Taking this value close
to 1, however, is neither practical nor meaningful as

the integral is dominated by the outer region where G
cannot be kept uniform anyway.
The inlet velocity pro®le may be approximated by a

linear combination of basis functions fk (r ) as

uin�r� �
XN
k�0

akfk�r� �12�

where N is the degree of functions used. Taking advan-
tage of symmetry, we choose the Chebyshev poly-

nomial of even degree as the basis function in view of
its orthogonality and excellent properties of approxi-
mating functions. The objective now becomes to ®nd

the set of coe�cients ak in Eq. (12) that minimizes the
cost function E. The process is referred to as `reduced
basis method' [16] and is far more e�cient and/or

accurate than seeking the velocity distribution itself at
discrete node points across the inlet in which the com-
parable accuracy can only be achieved with a great

deal more computational e�ort.
To tackle the nonlinear relation between the cost

function and the design variable, an approach known
as `sequential linear programming (SLP)' [16] is

adopted: Consider the present nonlinear programming
problem to minimize Eq. (11) which is a function of a.
Using the ®rst order Taylor expansion about point a0,

the cost function at a (=a0+da) can be written as

E�a�1E�a0� � rE�a0�da �13�

Rather than dealing directly with this equation to ®nd
da, it is more convenient and makes more sense to
work with the growth rate G(a) since G is more sensi-

tive to the ¯ow ®eld and, thus, to a than E is. In other
words, the direction and the magnitude of da that
minimizes E can be found more e�ectively by Eq. (11)

with G as an intermediate variable than by Eq. (13)
alone. To implement this idea, we ®rst linearize the
growth rate as was done for E in Eq. (13):

G�a�1G�a0� � rG�a0�da �14�

This, together with Eq. (11), is used to evaluate the
cost function after each change in a is made. The

approach is very e�cient in ®nding da and makes the
whole optimization procedure computationally a�ord-
able as the number of passes through the time-consum-

ing ¯ow analysis loop can be kept minimum. The
procedure is outlined in Fig. 2; the optimum state is
considered achieved when the relative variation in E

becomes less than 10ÿ3. Fig. 3 provides a geometric in-
terpretation of the SLP to search for the optimal point
with two design variables. The di�culty arising from

Fig. 2. Flow chart of the optimization procedure.
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the strong nonlinearity can be overcome by imposing a
limit on da indicated by a dotted circle in the ®gure.
The optimal design variable da is sought within this

limit by the random search technique [16].
The optimum inlet velocity pro®le is determined

under the constraints that the inlet ¯ow rate is ®xed
and the velocity is nonnegative:�
Ain

uin dA � const �15�

uin�r�r0 �16�
where Ain is the area of the reactor inlet. It can be
readily shown, by simple rearrangement of the con-

stant terms in the series (12), that Eq. (15) ®xes the
coe�cient a0 and no ¯ow analysis for k = 0 is needed.
With the polynomial of 6th degree approximating

the inlet velocity distribution, the optimization process
converges in about 30 steps, each of which contains 4
¯ow-®eld calculations, for the most strongly nonlinear
problem (H= 1, Re = 100) considered in this study; a

di�usion dominant ¯ow can get by with fewer ¯ow
analyses since milder nonlearity allows da to take a
larger step. It is evident that the use of a lager value

for the limit on da accelerates the convergence when
converges. However, no attempt has been made in the
present study to devise a systematic technique to ®nd

the optimal value. We used a su�ciently small limit
(0.1±0.3) to get convergence without trial and error.
The total computing time seems reasonable: about

180 min on a 233 MHz Pentium PC for the aforemen-
tioned problem.

4. Results and discussion

The ¯ow-analysis code described in the earlier sec-

tion was fully veri®ed in Cho et al. [9], and the vali-
dation step will not be repeated here as the code is
modi®ed only slightly. A further evidence of the pro-
cedure is provided in Fig. 4 that shows the growth rate

of GaAs epitaxial layer, which is normalized by the
value at the center. The results are obtained for
Re = 13, the rotation number ReO/Re = 0.1, and H/

R = 3, with a nonuniformly distributed grid of
90 � 90. The computational results, which represent
the concentration gradient normal to the surface, are

Fig. 3. Graphic representation of sequential linear programming.

Fig. 4. Comparison of predicted and measured [3] growth rate

in a vertical CVD reactor.
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in close agreement with the measurement taken by

Wang et al. [3] and thus con®rm that the code is func-
tioning properly and is ®t to be used in the optimiz-
ation process. This also substantiates the earlier

assumption that the growth rate is proportional to the
normal concentration gradient.
We now turn the attention to the problem of opti-

mizing the inlet velocity pro®le. The reactor perform-
ance depends greatly on the inlet ¯ow rate which, for
most MOCVD reactors, falls within the Re range of

0.1±100. The cases considered in the present study are
for three di�erent Reynolds numbers (Re = 1, 10, 100)
in combination with two susceptor locations (H = 0.5,
1) as summarized in Table 1.

Owing to Fotiadis et al. [4], Pr and Sc for H2 and
Ga(CH3)3 as the working ¯uid (carrier gas) and the
reactant gas at 900 K and 0.1 atm come out to be 0.7

and 2.33 since n=7 � 10ÿ3 (m2/s), aT=1 � 10ÿ2 (m2/s)
and aM=3 � 10ÿ3 (m2/s). A thorough test on the grid
density and location of the exit plane in the exhaust

passage has been carried out for the most convection
dominant case, i.e. Re = 100, H = 1.0, with the uni-
form inlet ¯ow. Table 2 compares the cost function
and the average growth rate for various grids and

domain sizes. It shows that these have converged and
the relative errors in the results on coarse grids with

respect to the value obtained with the ®nest grid
(96 � 100) are very small. Also, since the results for a
larger computational domain and those with a more

strict convergence criterion (10ÿ6) are comparable, it is
safe to conclude that the domain is large enough and

Table 2

Grid sensitivity on the function and average growth rate (H = 1, Re = 100)

Grid Cost function E (�100) Average growth rate Remark

48 � 52 4.410 (1.2)a 11.27

68 � 72 4.364 (0.14)a 11.27 selected

96 � 100 4.358 11.27 reference

68 � 72 4.367 11.27 (exit length) � 2

68 � 72 4.366 11.27 convergence, E=10ÿ6

a ( ): relative error (%) with respect to the results of 96 � 100 grids.

Table 1

Operating parameters employed in the present results

Height

(H )

Re Gr/Re 2 Cost function �
100

Average growth

rate

uniform optimum uniform optimum

1 1 0 5.3 2.2 1.5 1.6

1 10 0 3.0 0.32 3.6 4.1

1 100 0 4.4 0.22 11 15

0.5 1 0 1.1 0.31 2.4 2.4

0.5 10 0 0.58 0.029 5.0 5.1

0.5 100 0 1.5 0.11 15 17

1 10 50 25 5.9 4.0 4.4

Fig. 5. Distribution of normalized growth rate as a function

of radial position; (a) reactor height=1, (b) reactor

height=0.5.
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the 68 � 72 grid is su�ciently ®ne to resolve the ¯ow
®eld and therefore are used throughout the study.

The growth-rate distribution normalized by its aver-
age value for various Reynolds numbers and two sus-
ceptor locations is shown in Fig. 5. The variation of

the results in the radial direction for unoptimized uni-
form inlet ¯ows is fairly large: the ®lm is seen to grow
faster in the outer part of the wafer while the growth

rate is small and relatively uniform in the central
region. The smaller than average growth rate near the
center is attributed to the lack of replenishment of

reactant as can be seen from the streamlines in Fig. 6;
the accelerating ¯ow near the susceptor edge, on the
other hand, thins down the boundary layer and
increases the growth rate. Also the variation is less for

Re= 10 than for the other two Reynolds numbers,
and this may be elaborated as follows. Comparing to

the case for Re= 10, the mass transfer is enhanced by
the stronger di�usion when Re= 1 and, hence, the

reactant gas near the surface gets richer as it travels
outward in the radial direction. On the other hand, the
accelerating e�ects are more pronounced when

Re = 100 due to the reduced ¯ow passage resulting
from a larger recirculation region seen in Fig. 6. It is
interesting to note that the growth rate is more uni-

form for a smaller H (Fig. 5(b)) as the ¯ow remains
less disturbed because of a shorter travel distance.
To improve the uniformity of the growth rate for

these cases, the optimization process, described in the
previous section, is invoked to determine the inlet vel-
ocity pro®le. The resulting velocity distributions of
6th-degree Chebyshev polynomials are shown in Fig. 7

and the associated growth rates are compared in Fig.
5. It appears from the ®gure that the pro®les for

Fig. 6. Flow ®elds obtained with uniform inlet velocity; (a)

Re= 10, (b) Re= 100.

Fig. 7. Optimal inlet velocity pro®les for various ¯ow rates

and reactor heights; (a) reactor height=1, (b) reactor

height=0.5.
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H= 0.5 are easier to produce than those for H = 1. It
is because those for the latter vary substantially across

the inlet cross-section. Note that, for both susceptor
locations, the lowest Re case poses the most challen-
ging optimization problem. The di�usion is so domi-

nant in these cases and little can be altered by
controlling the inlet pro®le especially when the distance
to the susceptor face becomes large. The similar

phenomenon was observed when the function to be
optimized was the inlet concentration pro®le in Cho et
al. [9].

The cost function and the average growth rate
before and after the optimization are summarized
quantitatively in Table 1. The improvement on uni-
formity is clear and remarkable; more than tenfold for

Re= 10 and 100. The case for Re = 1 is not so suc-
cessful, however, as the e�ective mixing due to di�u-
sion nulli®es any di�erence in inlet velocity pro®les.

The average growth rate also increases when the inlet
velocity distribution is optimized. The trend is more

pronounced with increasing Re. An interesting point
may be drawn from this table. It is apparent that,

between the two inlet-to-wafer distances, H = 0.5 is
more e�cient as could be expected in Fig. 5: the
growth rate for unoptimized cases is higher (more ef-

®cient) and more uniform. The optimized inlet velocity
distribution successfully narrows the gaps in growth
rate and uniformity. This suggests that even if the

chamber shape is not optimum, the performance may
be brought close to optimum by controlling other par-
ameters, such as the inlet velocity pro®le.

Figs. 8 and 9 depict the isovels for H= 1.0 and 0.5,
respectively, for Re = 100 before (a) and after (b) the
optimization. The axial velocity shows the clear trend
of acceleration in the neighborhood of the susceptor

corner when the inlet ¯ow is uniform (a) as the ¯uid is
squeezed to pass through the gap formed by the sus-
ceptor and the large recirculating region in the

chamber corner. This inevitably thins the viscous layer
on the wafer surface and increases the concentration
gradient in the region as seen in Fig. 5. This situation

can be improved by reducing the velocity in the inlet
edge as plotted in Fig. 7. The corresponding isovels
(Figs. 8(b) and 9(b)) become much more uniform as

the ¯ow nears the susceptor face.
As a ®nal test case, we present the ¯ow in which the

buoyancy force is not negligible with H= 1, Re= 10,
and Gr/Re 2=50. The ¯ow and concentration ®elds

along with the optimized inlet velocity pro®le are
shown in Fig. 10. The streamlines for the uniform inlet
velocity, which are denoted by the dotted lines, exhibit

Fig. 8. Isovels of axial velocity component for H = 1 and

Re= 100; (a) unoptimized, (b) optimized.

Fig. 9. Isovels of axial velocity component for H= 0.5 and

Re = 100; (a) unoptimized, (b) optimized.
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a sizable recirculating region near the susceptor corner.
A large buoyancy driven upward motion is responsible
for this and, as a result, the concentration gradient in

the region decreases signi®cantly and the uniformity
su�ers. The optimized inlet velocity is seen to reduce
this undesirable phenomenon and greatly improves the
growth-rate uniformity as the near parallel iso-concen-

tration lines near the susceptor surface con®rm.

5. Conclusions

The Navier±Stokes code developed earlier has been

modi®ed and incorporated in the present optimization
technique for the inlet velocity pro®le to produce the
most uniform epitaxial layer in a vertical MOCVD

reactor for the given condition. The time-consuming
nonlinear nature of the optimization process is ef-

®ciently handled by adopting the sequential linear pro-
gramming approach.
The optimal inlet velocity pro®le represented by a

6th-degree Chebyshev polynomial is very successful in
reducing the spatial non-uniformity of the growth rate.
The procedure is particularly e�ective when the

Reynolds number is high and the inlet-to-wafer dis-
tance becomes large. It is also found that a properly
constructed inlet velocity pro®le can suppress the

buoyancy driven secondary ¯ow and improve the
growth-rate uniformity. The present technique can be
applied to ®nd the optimal inlet-to-wafer distance and
other shape optimization problems.
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